Основные сведения о палладии

12.01.2019 0 Автор: admin1

Что такое аффинирование

Аффинаж палладия — это процесс его отделения от других металлов. Используется в лабораторных условиях, но нередко химики и предприимчивые умельцы готовы провести аффинирование в домашних условиях.

Это делается по причине того, что:

  1. Элемент используется в большом количестве химических реакций.
  2. Его можно сдать и получить вознаграждение.

Стоимость одного грамма Pd колеблется в пределах от 1000 рублей и выше. Поэтому гораздо проще сдать несколько граммов палладия, чем собирать детали от компьютера и радиоприемника.

Можно попробовать получить Pd двумя способами:

  • электролизом;
  • растворением в царской водке.

Если попробовать снять Pd с деталей путем электролиза, то и тут не обойтись без смеси серной и азотной кислот. Проводится электролиз в концентрате серной кислоты, основная часть деталей из меди и латуни не пострадает, она останется. В ходе процесса сам палладий не образуется, получится отделить сплав, в составе которого есть Pd. Полученный сплав нужно растворить в царской водке.

Как определить палладий? Он снимется с деталей в виде черного порошка или хлопьев. Пока электролит чистый, промывка делается просто, если раствор нагрелся, то его нужно остудить. Обработка осадка проводится с применением царской водки.

При работе необходимо напряжение в 11–13 вольт, его подают до того, как деталь погружают в раствор. Необходимо продумать и процесс отделения Pd от других элементов, таких как серебро, золото и пр. Для этого понадобится азотная и соляная кислоты, а также раствор аммиака и воды.

Азотная кислота вместе с серной помогает отделить Pd от других элементов. Понять, что палладий есть в растворе, можно просто оценив его цвет. Во время реакции раствор приобретает характерный коричневый оттенок. Это свидетельствует о том, что Pd присутствует в составе сплава и опыты имеет смысл продолжать.

Если в составе сплава есть еще и золото, то раствор оставляют на сутки, предварительно залив его холодной водой. Далее проводят фильтрацию хлорида серебра, в результате чего в растворе остается только золото и Pd.

Процедура аффинажа палладия проводится с помощью аммиака. Он соединяется с раствором, смесь оставляют на двое суток, после чего можно отфильтровать золото, а палладий останется в растворе. В дальнейшем золото можно восстановить при помощи соляной кислоты и цинка.

В раствор с Pd стоит добавить соляной кислоты — появляется осадок оранжевого или желтого цвета. Через несколько часов осадок стоит отфильтровать, его высушивают и прокаливают при температуре не ниже 500 градусов. В результате процедуры можно получить аффинаж Pd. Некоторое количество драгметалла останется в растворе его можно получить при помощи повторного аффинирования.

Продуктивность процесса зависит от того, сколько палладия содержалось в деталях, а также от того, какие элементы помимо Pd входили в состав сплава.

В целом процедура достаточно сложная, требует определенных навыков в химии, порой получить положительный результат можно лишь путем проб и ошибок.

Интересные факты

Известно, что палладий часто используется ювелирами в сплавах с другими благородными металлами. Так сплавы 583-ей и 750-ой проб называемые «белым золотом» могут содержать от десяти процентов палладия и больше. В нашей стране правительством официально установлены пробы палладия 500 и 850. Эти пробы наиболее распространены в ювелирных изделиях.

Еще одна палладиевая проба, пользующаяся популярностью — 950. Связано это с тем, что из металла, такой пробы делают обручальные кольца, как альтернативу кольцам из белого золота с родированным покрытием. Дело в том, что родий довольно быстро стирается с поверхности кольца, и не каждый сможет ежегодно обновлять дорогостоящее покрытие. Палладиевые кольца имеют абсолютно такой же внешний вид, как золотые, но не требуют ежегодного обновления. Помимо стандартных сплавов палладия в ювелирном производстве иногда используются декоративные соединения палладия с индием, образующие широкую цветовую гамму от золотистого до сиреневого. Однако изделия из такого сплава — большая редкость.

В 1988 году впервые были отчеканены из палладия 25-рублевые монеты в серии «1000-летие древнерусской монетной чеканки, литературы, зодчества, крещения Руси». На монете весом 31,1 г высшей 999 пробы изображен памятник князю Владимиру Святославовичу в Киеве. В Базеле на Международной нумизматической выставке эта серия признана лучшей программой года, получив первый приз за качество исполнения.

Выпуск таких монет был ограниченным и продолжался недолго, по этой причине монеты имеют высокую коллекционную стоимость. Наибольшую ценность представляют две серии монет (выпуск 1993-1994 гг.): «Первое русское кругосветное путешествие. 1803-1806» — «Шлюп «Надежда»» с портретом И. Ф. Крузенштерна, «Шлюп «Нева» (Ю.Ф. Лисянский)». Вторая серия «Первая русская антарктическая экспедиция. 1819-1821» — «Шлюп «Мирный» (М.П. Лазарев)», «Шлюп «Восток» (Ф. Ф. Беллинсгаузен)». Также представлены монеты серии «Россия и мировая культура» — «А. Рублев», «М. П. Мусоргский», монеты серии «Русский балет» и посвященные российским монархам.

В мире немало наград и премий, которые вручаются выдающимся ученым. Существует медаль имени Уильяма Хайда Волластона, изготовленная из чистого палладия. Учреждена эта награда была почти два века назад (1831) Лондонским геологическим обществом и по началу изготовлялась из золота. Лишь в 1846 году известный английский металлург Джонсон извлек из бразильского палладистого золота чистый палладий, предназначавшийся исключительно для изготовления этой медали. В числе удостоенных медали имени Волластона был Чарльз Дарвин, а в 1943 году медаль была присуждена советскому ученому академику Александру Евгеньевичу Ферсману за его выдающиеся минералогические и геохимические исследования. Сейчас эта медаль хранится в Государственном Историческом музее.

Однако это не единственная палладиевая медаль. Вторую, присуждаемую за выдающиеся работы в области электрохимии и теории коррозионных процессов, учредило Американское электрохимическое общество. В 1957 году этой наградой были отмечены труды крупнейшего советского электрохимика академика А. И. Фрумкина.

В заслуги Уильяма Волластона входит не только открытие палладия (1803) и родия (1804), получение первой чистой платины (1803), но и независимое от И. Риттера открытие ультрафиолетового излучения. Кроме того, Волластон сконструировал рефрактометр (1802) и гониометр (1809).

Палладиевая промышленность в России появилась сравнительно поздно. Лишь в 1922 году Государственный аффинажный завод выпустил первую партию русского аффинированного палладия. Этим было положено начало промышленному получению палладия в нашей стране.

Известно, что палладий способен усилить антикоррозионные свойства даже такого стойкого к агрессивным средам металла, как титан. Добавка палладия всего в 1 % повышает устойчивость титана к серной и соляной кислотам. Так за год пребывания в соляной кислоте пластинка из нового сплава теряет всего 0,1 миллиметра своей толщины, в то время как чистый титан за тот же срок утончается на 19 миллиметров. Раствор хлорида кальция вовсе не действует на сплав, титан же ежегодно теряет до двух миллиметров в агрессивной среде. В чем же секрет такого сплава? Дело в том, что кислота взаимодействует в первую очередь с палладием и тут же поверхность второго компонента сплава покрывается тончайшей окисной пленкой — деталь как бы надевает на себя защитную рубашку. Это явление было названо учеными самопассивацией (самозащитой) металлов.

Применение

Еще одним очень ценным свойством палладия является его относительно низкая цена. Так в конце шестидесятых годов прошлого века он стоил примерно в пять раз меньше, чем платина. Со временем цена на сорок шестой элемент возросла, однако возросли цены и на другие благородные металлы. Именно это качество палладия делает его самым перспективным из всех платиновых металлов, расширяя сферы его использования.

Палладий, как и прочие платиновые металлы — прекрасный катализатор. В его присутствии начинаются и идут при низких температурах многие практически важные реакции, например, процессы гидрогенизации жиров и крекинга нефти. Процессы гидрирования многих органических продуктов палладий ускоряет гораздо лучше, чем такой испытанный катализатор, как никель. Сорок шестой элемент в качестве катализатора используют в производстве ацетилена, многих фармацевтических препаратов, серной, азотной, уксусной кислот, удобрений, взрывчатых веществ, аммиака, хлора, каустической соды и других продуктов органического синтеза.

В аппаратуре химических производств катализатор из палладия чаще всего используют в виде «черни» (в тонкодисперсном состоянии палладий, как и все платиновые металлы, приобретает черный цвет) или в виде окисла PdO (в аппаратах гидрирования). С семидесятых годов XX века палладий активно стала использовать автомобильная промышленность в катализаторах дожигания выхлопных газов (нейтрализаторы). Между прочим, нейтрализаторы необходимы не только для очистки выхлопных газов автомобилей, но и для очистки любых газовых выбросов, например на ТЭЦ. Промышленные установки подобного назначения применяются в США, некоторых странах ЕС и Японии.

Благодаря тому, что водород активно диффундирует через палладий, последний применяют для глубокой очистки водорода. Под небольшим давлением газ пропускают через закрытые с одной стороны палладиевые трубки, нагретые до 600° C. Водород быстро проходит через палладий, а примеси (пары воды, углеводороды, кислород, азот) задерживаются в трубках. Для удешевления процесса используют не чистый палладий, а сплавы его с другими металлами (серебро, иттрий).

Палладий и сплавы на его основе широко используются в электронике — для покрытий, устойчивых к действию сульфидов. Определенное количество этого металла идет на производство реохордов прецизионных сопротивлений высокой точности (аэрокосмическая и военная техника), в том числе в виде сплава с вольфрамом (например, ПдВ-20М). В чистом виде палладий входит в состав керамических конденсаторов, с высокими показателями температурной стабильности ёмкости, которые нашли применение в производстве пейджеров, мобильных телефонов, компьютеров, широкоэкранных телевизоров и прочих электронных приборов. Хлорид палладия PdCl2 применяется в качестве активирующего вещества при гальванической металлизации диэлектриков — в частности, осаждении меди на поверхность слоистых пластиков при производстве печатных плат в электронике.

Необходим сорок шестой элемент и в ювелирном деле, как в качестве компонента сплавов, так и сам по себе. Например, хорошо известное понятие «белое золото», обозначает сплав золота, палладия и некоторых других элементов. Например, «белое золото» 583-й пробы содержит 13 % палладия, а белый драгоценный металл 750-й пробы имеет следующий состав: Au – 75 %, Ag – 4 %, Pd – 21 % (для этой пробы состав может изменяться). «Чистые» палладиевые ювелирные украшения имеют в своем составе примесь рутения в 5 %.

Палладий используется для изготовления специальной химической посуды (например, для производства плавиковой кислоты) — перегонные кубы, сосуды, детали насосов, реторты. Часть металла расходуется на изготовление стойких к коррозии деталей высокоточных измерительных приборов.

В стекольной промышленности сплавы палладия применяют в тиглях для варки стекла, в фильерах для получения искусственного шелка и вискозной нити.

Палладий и его сплавы используются и в медицине — изготовление медицинского инструментария, деталей кардиостимуляторов, зубных протезов. В некоторых странах незначительное количество палладия используется для получения цитостатических препаратов — в виде комплексных соединений, аналогично цисплатине.

История

Открыт английским химиком Вильямом Волластоном (William Hyde Wollaston) в 1803 году. Волластон выделил его из платиновой руды, привезённой из Южной Америки.

Вильям Волластон (1766—1828) — первооткрыватель палладия

Для выделения элемента Волластон растворил руду в царской водке (aqua regia), нейтрализовал кислоту раствором NaOH, затем осадил платину из раствора действием хлорида аммония NH4Cl (в осадок выпадает гексахлороплатинат(IV) аммония). Потом к раствору был добавлен цианид ртути, при этом образовался цианид палладия(II). Чистый палладий был выделен из цианида нагреванием.

История

Уильям Волластон (1766—1828)

В 1803 году известный лондонский торговец минералами Форстер получил анонимное письмо с просьбой попытаться продать небольшое количество нового химического элемента — «палладия», слиток которого прилагался к письму

Таинственный металл был выставлен на продажу и привлёк всеобщее внимание. Среди английских химиков разгорелись споры, является ли этот металл действительно новым химическим элементом или же это просто сплав уже ранее известных металлов

Химик Ричард Ченевикс, желая разоблачить «мошенническую подделку», купил слиток «палладия». Вскоре Ченевикс выступил с докладом перед членами Лондонского Королевского общества, где объявил, что данный металл — всего лишь сплав платины с ртутью. Однако секретарь Королевского общества химик Уильям Хайд Волластон публично усомнился в выводах Ченевикса. Другим химикам не удалось выделить в этом «сплаве» ни платины, ни ртути. Споры вновь обострились и какое-то время активно продолжались. Когда же они стали стихать, в научном журнале Nicholson’s Journal появилось анонимное объявление, что любому, кто в течение года сможет изготовить искусственный палладий, будет выплачена награда в 20 фунтов стерлингов. Интерес к металлу вновь подскочил, но никому так и не удалось его изготовить.

В 1804 году Уильям Волластон доложил Королевскому обществу, что в платиновой руде из Южной Америки он обнаружил новые ранее неизвестные металлы — палладий и родий. Стремясь очистить выделенную из руды «сырую» платину от примесей золота и ртути, он растворял её в царской водке, а затем осаждал её из раствора нашатырём. Оставшийся раствор имел розовый оттенок, что было невозможно объяснить присутствием золота и ртути. Тогда в этот раствор был добавлен цинк, что привело к выпадению чёрного осадка. Волластон обнаружил, что если попытаться растворить этот высушенный осадок царской водкой, то часть его растворяется, а часть — нет. После разбавления раствора водой Волластон добавил в него цианид калия, что привело к обильному выпадению осадка уже оранжевого цвета, который при нагревании сначала приобрёл серый цвет, а затем сплавился в капельку металла — палладия, который по удельному весу был меньше ртути. Из оставшейся нерастворённой части чёрного осадка им был выделен другой металл — родий.

Лишь в феврале 1805 года в Nicholson’s Journal было опубликовано открытое письмо Волластона, в котором он признался, что скандальная шумиха вокруг палладия — дело его рук. Именно он пустил в продажу новый металл, и он же дал анонимное объявление с обещанием премии за его искусственное изготовление, уже располагая доказательством, что палладий — это новый металл.

История

1 сезон

Появляется в серии «Добро пожаловать в Магикс». На одном из занятий природной магии он отводит учениц на Черное Грязевое Болото. Там Палладиум даёт им задание выбраться с болота не используя магию, а сам исчезает. Однако урок срывается, потому что прилетают специалисты, и Винкс помогают им поймать сбежавшего тролля. («Черное грязевое болото»)

Во время финальной битвы с Трикс и Армией Тьмы Палладиум выглядит более решительным.

2 сезон

У второго курса сезоне профессор преподаёт не природную магию, а целенаправленные заклинания. Он учит девушек создавать плазменную сферу. Первой вызывается Стелла, однако, услышав, к каким последствиям может привести ошибка, просит Амарил выйти первой. Но та, мстя Стелле, запускает сферой в одноклассницу. Профессор Палладиум останавливает сферу перед самым носом девушки и говорит Амарил, что если она поступит так ещё раз, ей грозит исключение. («Секрет профессора Авалона»).

В серии «Поселение пикси» Палладиум лечит профессора Авалона, который наткнулся на опасное растение в лесу. Однако позднее становится понятно, что этот инцидент был подстроен специально для получения кодекса, а также вскрывается истинная сущность Авалона.

4 сезон

В четвёртом сезоне Палладиума показали лишь в двух эпизодах. В первой серии «Охотники на фей» он помог Текне создать необычную полосу препятствий, которую назвали «Один день из жизни Винкс».

Основные сведения о палладии

Затем профессор во второй серии «Древо жизни» создаёт гало-виртуальную проекцию для того, чтобы помочь Фарагонде рассказать про Магов Чёрного Круга.

5 сезон

Основные сведения о палладии

В этом сезоне Палладиум появляется лишь несколько раз, когда помогал Винкс с поиском Сиреникса и наблюдал за соревнованием Уинд Райдеров специалистов из Красного Фонтана.

Основные сведения о палладии

Профессор также фигурирует в эпизоде «Проблемы любви». Он провожает Винкс в заповедник Алфеи и открывает для них портал

Палладиум поясняет феям, что в заповеднике их силы ослабеют и для того, чтобы выжить им необходима осторожность и интуиции, и желает удачи.  

Основные сведения о палладии

В серии «Прислушайся к своему сердцу» он проводил волейбольный матч между Винкс и Кристал с её однокурсницами. Профессор даёт несколько советов команде Кристал о том, как можно обыграть своего соперника.

Основные сведения о палладии

Чуть позже Флора вспомнила сказанные Палладиумом слова и использует его совет в борьбе против дронов на планете Зенит.

Когда перед вами сильный противник, прямая атака может сорваться, а хитрость принесёт победу.

6 сезон

Основные сведения о палладии

В серии «Легендариум» выступает фоновым персонажем во время вступительной речи и вечеринки в честь юбилея Фарагонды.

Основные сведения о палладии

Позже профессор Палладиум показан в серии «Секретная оранжерея», где в одной из лаборатории он вёл зельеварение. На уроке он продемонстрировал превращение заколдованных Трикс Лори, Иви и Кэрол обратно из лягушек в фей. А также помог Рокси расколдовать директрису Гриффин. 

Основные сведения о палладии

После урока профессор рассказал Винкс об Эльдоре — бывшей учительнице, у  

которой когда-то была Тайная оранжерея, что существует по сей день. 

Химические свойства

Перед описанием химических свойств палладия необходимо упомянуть о том, что это единственный элемент с предельно заполненной наружной электронной оболочкой: на внешней орбите атома палладия 18 электронов

Какова же важность данного факта? Дело в том, что при таком строении атом просто не может не обладать высочайшей химической стойкостью. Поэтому, на палладий при нормальных условиях не действует даже всесокрушающий фтор

В соединениях палладий бывает двух-, трех- и четырехвалентным, чаще всего двухвалентным. В тоже время, сорок шестой элемент — самый активный из платиновых металлов, близкий по химическим свойствам к платине. На воздухе палладий устойчив до температуры 300—350 °C, после которой начинает окисляться кислородом, образуя на поверхности тусклую пленку оксида палладия PdO:

2Pd + O2 → 2PdO

Что интересно, «перевалив» рубеж в 850 °C оксид палладия PdO разлагается на металл и кислород, и при такой температуре металлический палладий становится устойчивым к окислению вновь.

Палладий не реагирует с водой, разбавленными кислотами, щелочами, гидратом аммиака. Это объясняется положением сорок шестого элемента в ряду стандартных потенциалов, где он находится правее водорода. Зато палладий взаимодействует с концентрированными серной и азотной кислотами, растворяется в царской водке:

Pd + 2H2SO4 → PdSO4 + SO2 + 2H2O

Pd + 4HNO3 → Pd(NO3)2 + 2NO2+ 2H2O

3Pd + 4HNO3 + 18HCl → 3H2 + 4NO + 8H2O,

а также переходит в раствор при анодном растворении в соляной кислоте. При растворении в царской водке палладий образует гексахлоропалладиевую (IV) кислоту H2, разлагающуюся при кипячении до Н2 и Сl2.

При комнатной температуре палладий реагирует с влажными бромом и хлором:

Pd + Cl2 → PdCl2

Дихлорид палладия PdCl2 — красные кристаллы, легко растворимые в воде и соляной кислоте. Причем в результате последней реакции получается тетрахлоропалладиевая (II) кислота H2.

При температуре 500 °C и выше сорок шестой элемент может взаимодействовать с фтором и другими сильными окислителями, а также с серой, селеном, теллуром, мышьяком и кремнием.

Очень интересно взаимодействие палладия с водородом — металл способен поглощать большое количество этого газа (при комнатной температуре один объем палладия вбирает в себя до 950 объемов водорода) благодаря образованию твердых растворов с увеличением параметра кристаллической решетки. Водород находится в металле в атомарном виде и обладает высокой химической активностью. Поглощение большого объема водорода не проходит бесследно для палладия — металл разбухает, вспучивается, дает трещины. Поглощенный газ легко удаляется из палладия при нагреве до 100 °С в вакууме.

Кроме поглощения водорода палладий обладает свойством транзита данного газа через себя. Так, если в изготовленный из палладия сосуд закачать под давлением водород, а затем нагреть закупоренную емкость, то водород «вытечет» из палладиевого сосуда через стенки, как вода сквозь решето. При 240 °С за одну минуту через каждый квадратный сантиметр палладиевой пластинки толщиной в миллиметр проходит 40 кубических сантиметров водорода, а с повышением температуры проницаемость металла становится еще более значительной.

Как и все платиновые металлы, палладий образует множество комплексных соединений. Комплексы двухвалентного палладия с аминами, оксимами, тиомочевиной и многими другими органическими соединениями имеют плоское квадратное строение и этим отличаются от комплексных соединений других платиноидов. Те почти всегда образуют объемные октаэдрические комплексы. Современной науке известна не одна тысяча комплексных соединений палладия. Некоторые из них приносят практическую пользу — хотя бы в производстве самого палладия.

Производство

Нам известно, что Уильям Хайд Волластон выделил палладий при изучении новейших методов аффинажа платины. Растворяя сырую платину в царской водке и осаждая из раствора нашатырем только чистый благородный металл, химик отметил необычный розовый цвет раствора. Окраску подобного рода нельзя было объяснить присутствием в сырой платине известных примесей, из этого Волластон сделал заключение о наличии неких платиновых металлов в образцах исследуемой им руды.

Подействовав на полученный раствор необычного цвета цинком, английский химик получил осадок черного цвета, который он высушил и попытался повторно растворить в царской водке. Однако не весь порошок удалось растворить. Разведя этот раствор водой и добавив цианид калия (дабы избежать осаждения незначительных количеств платины, оставшейся в растворе), Уильям Волластон получил оранжевый осадок, который при нагревании приобрел серый цвет, а при сплавлении превратился в капельку металла, который ученый попытался растворить в азотной кислоте. Растворимая часть и являлась палладием.

Таким сложным и малопонятным языком сам ученый описывал открытие нового металла. Современные методы получения чистого палладия из природного сырья, основанные на разделении химических соединений платиновых металлов, очень сложны и длительны. Большинство фирм и корпораций, занимающихся аффинажем не расположены делиться своими производственными секретами. Можно лишь сказать, что получение палладия является одной из стадий переработки сырой платины и получения платиновых металлов. Получение металла производится по следующей схеме: из фильтрата, оставшегося после осаждения (NH4)2, в результате аффинажа получают труднорастворимое комплексное соединение дихлордиаммин палладия Cl2, его очищают от примесей других металлов перекристаллизацией из раствора NH4Cl. Прокаливая это соединение в восстановительной атмосфере водорода, получают палладий в виде губки:

Cl2 + H2 → Pd + 2NH3 + 2HCl

Губчатый палладий сплавляют в вакуумной электрической печи высокой частоты. Восстанавливая растворы солей палладия, получают мелкокристаллический палладий — палладиевую чернь. Электроосаждение палладия проводят из нитритных и фосфатных кислых электролитов, в частности с использованием Na2.

Применяют и другие способы аффинажа, в частности, основанные на использовании ионитов.

Известно, что в середине восьмидесятых годов прошлого века ежегодная добыча и производство палладия в западных и развивающихся странах составляла порядка 25-30 тонн. Из вторичного сырья палладия получали не более десяти процентов. В то же самое время на долю СССР приходилось до двух третей от общего мирового производства драгоценного металла. В наше время (по данным 2007 года) производство палладия составило 267 тонн, из них на долю России пришлось 141 тонна, ЮАР — 86 тонн, США и Канада — 31 тонна, прочие страны — 9 тонн. Из этой статистики видно, что производство, как и добыча сорок шестого элемента, возрастает, а роль лидера по-прежнему остается за нашей страной.

Изделия из палладия в основном производят штамповкой и холодной прокаткой. Из данного металла довольно легко можно получить цельнотянутые трубы нужной длины и диаметра. Кроме того, палладий выпускается в слитках 3000-3500 граммов, а также в виде лент, полос, фольги, проволоки и других полуфабрикатов.

На рынке торговли металлами наблюдается стремительный рост спроса на палладий. Возможно, в скором времени существующего предложения на рынке уже будет не хватать для удовлетворения растущего спроса на металл, в результате чего стоимость на палладий поднимется еще выше. Таким образом, палладий становится лучшим объектом для инвестиций среди драгоценных металлов.

Список источников

  • wiki2.org
  • DedPodaril.com
  • wiki.sc
  • www.i-think.ru
  • winxopedia.fandom.com